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As people form social groups, they benefit from being able to
detect socially valuable community members—individuals who act
prosocially, support others, and form strong relationships. Multi-
disciplinary evidence demonstrates that people indeed track
others’ social value, but the mechanisms through which such de-
tection occurs remain unclear. Here, we combine social network
and neuroimaging analyses to examine this process. We mapped
social networks in two freshman dormitories (n = 97), identifying
how often individuals were nominated as socially valuable (i.e.,
sources of friendship, empathy, and support) by their peers. Next,
we scanned a subset of dorm members (“perceivers”; n = 50) as
they passively viewed photos of their dormmates (“targets”). Per-
ceiver brain activity in regions associated with mentalizing and
value computation differentiated between highly valued targets
and other community members but did not differentiate between
targets with middle versus low levels of social value. Cross-
validation analysis revealed that brain activity from novel per-
ceivers could be used to accurately predict whether targets viewed
by those perceivers were high in social value or not. These results
held even after controlling for perceivers’ own ratings of closeness
to targets, and even though perceivers were not directed to focus
on targets’ social value. Overall, these findings demonstrate that
individuals spontaneously monitor people identified as sources of
strong connection in the broader community.
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Communities allow people to cooperate and support each
other, bolstering their collective and individual well-being.

One key way in which groups maximize collective benefit is by
rewarding prosocial individuals—for instance, through direct and
indirect reciprocity. Such “social selection” is likely a crucial driver
for the evolution of prosocial behaviors, and similar processes
promote and sustain prosociality in economic games (1–6). Social
selection, in turn, requires group members to first detect socially
valuable peers, who are generous, trustworthy, and supportive to
the community at large. In addition to benefiting the group, such
detection can also aid individuals. Socially valuable others provide
high-quality support and minimize others’ stress (7–10). They also
tend to be connected to other community members, and close
relationships with them can offer a gateway to additional social
resources (11, 12).
Despite the importance of social value detection, it remains

unclear how capably people detect socially valuable others in dy-
namic, real-world communities, or the mechanisms through which
this detection takes place. Here, we use a combination of social
network analysis and neuroimaging to explore the possibility that—
even absent explicit instructions to do so—individuals track their
peers’ social value. We focused on individuals undergoing the tran-
sition to college. During this period, individuals are separated from
their previous social networks (i.e., family and high school friends)
while facing increasing academic demands (13, 14). They also rapidly
build new communities, and students who quickly form close rela-
tionships on campus exhibit improved adjustment during the
first year of college and beyond (15–18).

We recruited newly matriculated college students from two
freshman-only dormitories at Stanford University (n = 97) (12).
In the second week of the academic year, we asked participants
to nominate dorm members in response to eight prompts: for
instance, identifying dorm members they viewed as socially
supportive, positive, and empathic. We then identified “hubs” in
each dorm: individuals who received unusually high numbers of
nominations. In a second phase of the study, we scanned a subset
of 50 students (“perceivers”) using fMRI while they viewed
photos of their fellow dorm members (“targets”).
During this task, participants were not instructed to evaluate tar-

gets in any way. Nonetheless, we predicted that targets’ social value
would be reflected in perceivers’ brain activity. Past work suggests
that when individuals encounter popular individuals from their net-
works, they engage brain regions, including medial prefrontal cortex,
temporoparietal junction, and ventral striatum (19, 20). These
regions are broadly associated with mentalizing—considering the
internal states of other people—and with value computation.
These regions are also preferentially engaged by salient social
targets, such as ingroup members, suggesting that popular indi-
viduals likewise take on motivational relevance in social networks.
Here, we build on that work in several ways. First, we con-

trolled for perceivers’ own relationship to each target when
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isolating brain activity related to targets’ social value. This
allowed us to test the prediction that individuals identify hub
individuals using community-level information, above and be-
yond their own idiosyncratic experience with targets. Second,
we tested whether targets’ social value could be predicted based
on perceivers’ brain activity. We first isolated brain regions—at
the group level—in which activity tracked the number of
nominations targets received (hereafter: targets’ “hub index”).
We then ran a series of leave-one-out cross-validation pre-
diction models, using activity in mentalizing- and reward-
related brain structures to differentiate between targets with
high, medium, and low hub index. In the first model, we used
overall activity in these regions to predict targets’ hub category.
In the second, we used multivariate patterns within these re-
gions to make similar predictions. In both models, we iteratively
trained an algorithm to differentiate between hub categories
using data from 49 perceivers. We then tested whether we could
use brain activity in the fiftieth perceiver to predict targets’ hub
category. Critically, the accuracy of each model provided an
objective measure of how closely dorm members were tracking
social value hubs in their community.
Finally, this approach allowed us to test different predictions

about the nature of social value detection. One possibility is that
group members retain a linear internal model of social value:
drawing similar distinctions between low, medium, and high
value peers. Another potentially more efficient strategy would be
for individuals to specifically monitor peers of high social value
but not differentiate between those with medium and low social
value. Some evidence from social network science suggests that
people indeed track unusually popular group members (21), but
this type of monitoring has never been examined at the neural
level. By marrying levels of analysis, we generated a test of the
mechanisms underlying value detection in new communities.

Results
Quantifying Social Value in Dorm Communities. A factor analysis
revealed that nominations in response to our eight prompts co-
hered into a single factor. Therefore, we computed a hub index
to represent each dorm member’s score on this factor, simulta-
neously capturing the number of unique connections for each
individual and the strength of these connections. More specifi-
cally, each person’s hub index was calculated by multiplying the
factor loading for each prompt with the total number of people
who nominated that individual when given that prompt (SI Ap-
pendix, Table S1) and then averaging across all prompts (i.e.,
weighted average). Hub index was positively skewed (dorm A
skewness = 0.71; dorm B skewness = 0.91), with long tails on the
right side (Fig. 1, Top), suggesting that a handful of individuals
emerge as hubs in the dorm community.

Brain Activity Tracking Social Value. Our neuroimaging analysis fo-
cused on the hypothesis that perceivers monitor how targets are
perceived by the broader dorm community, irrespective of how
perceivers themselves think about or interact with targets. To
capture these community-level perceptions, we counted the
number of ties directed to each target from the entire dorm, for
each of the eight questions. However, we did not include any di-
rect ties from the perceiver to the target in these totals. We then
computed a weighted average of these community nominations.
Despite the exclusion of the perceiver’s nominations, it is

possible that brain activity tracking group nominations could still
reflect shared variance with a perceiver’s idiosyncratic evalua-
tions. In our sample, correlations between individual and group
nominations across targets were low (average within-subject r =
0.13). Nonetheless, we controlled for the perceiver’s nominations
of targets and their self-reported closeness to targets in all
analyses. This further ensured that resulting brain activity
reflected community-wide perceptions of targets’ status as a
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Fig. 1. (Top) The distribution of hub index in each
dorm is divided into low (light blue), middle (dark
blue), and high (orange) hub categories. (Bottom)
Graphs of the social network in each dorm. Larger
nodes indicate higher numbers of nominations re-
ceived from the dorm. The darkest, thickest arrows
indicate that an individual was nominated for all
eight prompts whereas the lightest, smallest arrows
suggest that an individual was only nominated for
one prompt.
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social value hub, irrespective of how the perceiver in the scanner
viewed targets.
We conducted a whole-brain parametric analysis to isolate

brain regions in which activity increased as a function of targets’
hub index. This analysis revealed activity in regions related to (i)
mentalizing (22), including medial prefrontal cortex (MPFC),
temporal poles, and precuneus (SI Appendix, Table S2), and (ii)
value processing (23), including left striatum.

Neural Prediction of Social Value. The previous group-level analyses
suggest that perceivers passively tracked their dorm members’ hub
index as assessed by the broader community, in regions associated
with mentalizing and value computation. Our second analytic
approach focused on using brain activity from a given perceiver to
predict whether or not targets they encountered were viewed by
the community as social connection hubs. To do so, we divided
each dorm into three groups: individuals with low, middle, and
high hub index (hereafter, “hub category”) (Fig. 1). Dividing
dorms into terciles afforded sufficient power for subsequent pre-
diction analyses, while also allowing the high hub category to
capture individuals on the right tail of the distribution who were
viewed as having unusually high levels of social value.
As expected, individuals in the high hub category maintained

strong ties and were connected to several individuals in the
community. If these hub individuals were nominated by a member
of their community, they were typically nominated for 3.8 out of
the 8 questions (SD = 0.65). Across all eight questions, they were
also nominated by the highest number of unique individuals (SI
Appendix, Fig. S5). In dorm A, individuals in the high hub category
had more unique ties [mean (M) = 9.33, SD = 2.06] than people in
the middle [M = 5.06, SD = 1.61; t(29) = 6.46, P < 0.001] and low
hub categories [M = 1.53, SD = 1.55; t(28) = 11.72, P < 0.001]. In
dorm B, individuals in the high hub category (M = 11.76, SD =
3.67) had more unique ties than people in the middle [M = 5.65,
SD = 2.15; t(32) = 5.94, P < 0.001] and low hub categories [M =
2.76, SD = 1.52; t(32) = 9.35, P < 0.001].
We then averaged perceivers’ brain activity in response to

targets in each hub category and applied two leave-one-out
cross-validation models to the resulting data. In each, we itera-
tively trained an algorithm to differentiate between targets in
low, middle, and high hub categories using activation data from
each subset of 49 perceivers. We then tested whether we could
accurately predict the hub category of targets viewed by the fif-
tieth perceiver, based on that perceiver’s brain activity alone.

To assess the accuracy of these models, we used two different
metrics: (i) average within-subject correlation and (ii) forced-
choice classification accuracy. First, we tested if targets’ pre-
dicted hub category (i.e., low, middle, or high hub index) linearly
increased with the targets’ actual hub category in the held-out
participant. Second, we examined forced-choice classification
accuracy by testing the model on every pairwise comparison of
hub category (i.e., low vs. middle, middle vs. high, low vs. high
hub category) and assessed the model’s accuracy in predicting
which data came from a higher hub category.
Univariate prediction.We first assessed our ability to predict targets’
hub category from the mean activity of the entire mentalizing
network. Using the online metaanalytical tool Neurosynth, we
identified a set of brain regions related to mentalizing. This map
included MPFC, posterior medial cortex (PMC), temporoparietal
junction (TPJ), and temporal poles (TP) (SI Appendix, Fig. S7).
We trained a linear regression model to predict targets’ hub cat-
egory from average activity across this network in each subset of
49 perceivers and used regression weights drawn from this training
to predict targets’ hub category in the held-out participant. On
average, the within-subject correlation between the predicted and
actual levels of target hub category was moderate (SI Appendix,
Table S3) (mean r = 0.337, SE = 0.100, P = 0.002). (Significance
was assessed using a nonparametric permutation test. We re-
peated the analysis 1,000 times with randomly shuffled labels for
low, middle, and high hub categories within each participant,
generating a null distribution of r values. P values were computed
by comparing the r value obtained from the unshuffled data with
the corresponding null distribution.)
We also performed a forced-choice classification, testing whether

the predicted hub category of targets matched their actual cate-
gories in the held-out perceiver. To make this prediction, the model
used average activity in the mentalizing network for different target
categories (i.e., low vs. middle, middle vs. high, and low vs. high hub
category) in the other 49 perceivers. This analysis correctly distin-
guished between high and middle hub categories in 72% of held-out
participants (36 out of 50, P < 0.05, binomial test) and between high
and low hub categories in 70% of held-out participants (35 out of
50, P < 0.05, binomial test) but did not distinguish between middle
and low hub categories (24 out of 50, P = 0.887, binomial test) (Fig.
2). These results held when we repeated prediction analysis using
data from single regions within the mentalizing network (Table 1
and SI Appendix, Fig. S7). Taken together, our results demon-
strate that activity across the mentalizing network indeed tracks
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Fig. 2. Multivariate prediction of social value hubs.
(A) Patterns of weights associated with viewing targets
with higher hub index. (B) Average standardized pat-
tern response to hub index in the mentalizing net-
work, MPFC, and striatum. The standardized pattern
response was computed between the cross-validated
pattern weights learned by the multivariate model
and the activation map associated with each hub cat-
egory. This correlation corresponds to the standardized
pattern response reflecting the extent to which a given
map is similar to the pattern associated with increasing
hub status. The percentage indicates forced-choice
classification between each pairwise comparison. Er-
ror bars indicate SEM across participants. *P < 0.05 for
a two-sided binomial test. L, left; MPFC, medial pre-
frontal cortex; PMC, posterior medial cortex; R, right;
TP, temporal poles; TPJ, temporoparietal junction.
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community members’ hub category robustly enough to predict hub
category in new participants. It also provides further evidence that
people monitor the difference between hubs and nonhubs but fail to
differentiate between people who form middle versus low numbers
of close ties.
Based on prior work (19), we hypothesized that average ac-

tivity in perceiver brain regions associated with value computa-
tion would also track targets’ hub category. To test this
prediction, we used a reward-based functional localizer (SI Ap-
pendix, Fig. S3) to identify a cluster of activity spanning bilateral
ventral and dorsal striatum (SI Appendix, Fig. S7). We then re-
peated prediction analyses using average activity in this region of
interest (ROI). This regression model failed to linearly predict
targets’ hub category (SI Appendix, Table S3) or reach above
chance levels for forced-choice accuracy (SI Appendix, Fig. S7).
Finally, we tested whether targets’ hub category is reflected in

brain regions not canonically associated with either mentalizing or
reward processing. We repeated the above analyses using mean
activity from the primary visual cortex (V1) (SI Appendix, Fig. S7)
as identified using NeuroSynth. We found that prediction accuracy
was no different from chance for within-participant correlation (SI
Appendix, Table S3) and forced-choice accuracy (SI Appendix,
Fig. S7).
Multivariate prediction. Our next analysis took advantage of mul-
tivariate patterns in perceivers’ brain activity to further predict
targets’ hub category. This approach builds on work using mul-
tiregion brain “signatures” to predict personal experiences of
emotion or pain (24, 25), but with key differences. Unlike past
work, this analysis used signatures of brain activity to predict
perceptions of others (i.e., targets). It further moved beyond
examining neural responses related to a person’s personal rela-
tionship with each target (26) and instead isolated patterns of
brain activity that track perceptions in the broader community.
We trained a least absolute shrinkage and selection operator

principal component regression (LASSO-PCR) algorithm to
identify multivariate patterns of activity that tracked targets’ hub
category. These analyses focused specifically on patterns (i) across
the entire mentalizing network, (ii) within each mentalizing-related
region (MPFC, PMC, TPJ, and TP), (iii) in value-encoding regions
(striatum), and (iv) in a control region (primary visual cortex). We
again used a leave-one-participant-out procedure to train the al-
gorithm on each set of 49 perceivers as they viewed targets who
varied in hub index and then tested this pattern (Fig. 2) in the held-
out perceiver.
When our model employed neural patterns spanning per-

ceivers’ mentalizing network, model predictions of targets’ hub
category significantly correlated with their actual hub category
(mean r = 0.343 SE = 0.09, P = 0.003) (SI Appendix, Table S3).

Consistent with univariate analyses, forced-choice classification
accuracy correctly distinguished between high and middle hub
categories in 76% (38 out of 50, P < 0.05, binomial test) of held-
out participants and between high and low hub categories in 70%
(35 out of 50, P < 0.05, binomial test) of held-out participants
but did not distinguish between middle and low hub categories
(25 out of 50, P = 1, binomial test) (Fig. 2). Further, patterns of
activity within each mentalizing-related region showed similar
levels of prediction of accuracy as the entire network (Fig. 2)
(Table 2 and SI Appendix, Fig. S8).
Multivariate patterns in the striatum also produced model

predictions of hub index that significantly correlated with targets’
actual hub index (mean r = 0.298, SE = 0.09, P = 0.005) (SI
Appendix, Table S3). An algorithm trained on striatal patterns
also distinguished between faces with low vs. high (70% forced-
choice accuracy, 35 out of 50, P < 0.05, binomial test) as well as
middle vs. high hub category (66% forced-choice accuracy, 33
out of 50, P < 0.05, binomial test), but not between faces with
low vs. middle hub category (58% forced-choice accuracy, 29 out
of 50, P = 0.32, binomial test) (Fig. 2). These results stand in
contrast to the univariate analyses, which failed to predict hub
category from mean activity in the striatum. As with the uni-
variate models, prediction accuracy was no different from chance
when the algorithm was applied to activity in the primary visual
cortex (Table 2 and SI Appendix, Fig. S8).
Univariate vs. multivariate prediction. Lastly, we examined whether
average levels of neural activity versus fine-grained patterns in
each ROI would more accurately predict targets’ hub category.
For each perceiver, we calculated the root mean squared error
(RMSE)—a metric for how close the targets’ actual hub cate-
gories were to targets’ predicted hub categories—for both types
of models. We then conducted a paired-samples t test for each
ROI to determine if RMSE was significantly different for uni-
variate versus multivariate prediction (SI Appendix, Table S6).
Multivariate RMSE was numerically lower—suggesting higher
accuracy—for all regions of interest, but these differences were
only significant in the MPFC [t(49) = −2.779, P = 0.008] and
striatum [t(49) = −2.055, P = 0.045] (see also SI Appendix, Fig.
S9). Although these differences are significant, they should be
interpreted with caution because the effect is weak.
Taken together, our results suggest that viewing photos of

individuals with high hub index is associated with an increase in
activity across the mentalizing network and that this increase can
be used to predict when participants are viewing faces of hubs.

Table 1. Forced-choice classification accuracy between different
hub categories from mean ROI activity

ROI Low vs. mid Mid vs. high Low vs. high

Mentalizing Network 0.48 (0.07) 0.72 (0.06)* 0.70 (0.07)*
MPFC 0.48 (0.07) 0.70 (0.07)* 0.64 (0.07)
PMC 0.52 (0.07) 0.64 (0.07) 0.72 (0.06)*
R TP 0.52 (0.07) 0.72 (0.06)* 0.68 (0.07)*
L TP 0.46 (0.07) 0.72 (0.06)* 0.70 (0.07)*
R TPJ 0.52 (0.07) 0.64 (0.07) 0.68 (0.07)*
L TPJ 0.48 (0.07) 0.70 (0.07)* 0.66 (0.07)*
Striatum 0.40 (0.07) 0.62 (0.07) 0.58 (0.07)
V1 0.48 (0.07) 0.60 (0.07) 0.60 (0.07)

Numbers represent percentage of accuracy. Parentheses denote the
standard error of the mean. L, left; MPFC, medial prefrontal cortex; PMC,
posterior medial cortex; R, right; ROI, region of interest; TP, temporal poles;
TPJ, temporoparietal junction.
*P < 0.05 for a two-sided binomial test.

Table 2. Forced-choice classification accuracy between different
hub categories from multivoxel activity

ROI Low vs. mid Mid vs. high Low vs. high

Mentalizing Network 0.50 (0.07) 0.70 (0.07)* 0.76 (0.06)*
MPFC 0.52 (0.07) 0.88 (0.05)* 0.72 (0.06)*
PMC 0.56 (0.07) 0.66 (0.07)* 0.68 (0.07)*
R TP 0.40 (0.07) 0.70 (0.06)* 0.64 (0.07)
L TP 0.52 (0.07) 0.72 (0.06)* 0.68 (0.07)*
R TPJ 0.46 (0.07) 0.68 (0.07)* 0.72 (0.07)*
L TPJ 0.52 (0.07) 0.62 (0.07) 0.66 (0.06)*
Striatum 0.58 (0.07) 0.66 (0.07)* 0.70 (0.07)*
V1 0.50 (0.07) 0.54 (0.07) 0.58 (0.07)

Numbers represent percentage of accuracy. Parentheses denote the
standard error of the mean. L, left; MPFC, medial prefrontal cortex; PMC,
posterior medial cortex; R, right; ROI, region of interest; TP, temporal poles;
TPJ, temporoparietal junction.
*P < 0.05 for a two-sided binomial test.
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Discussion
To encourage prosociality and maximally benefit from social
connections, individuals must be able to detect socially valuable
others. Correspondingly, these detection skills develop early and
are—to some degree—evolutionarily preserved. For instance,
children (27, 28) and nonhuman primates (29) choose to repeat
interactions with individuals who have acted cooperatively in the
past. Adults also automatically evaluate others’ trustworthiness,
cooperative nature, and warmth in social exchanges (30–32).
Here, we provide evidence about how this detection occurs in
emerging real-world networks. Freshman dorm residents en-
gaged brain systems associated with mentalizing and value
computation when they viewed peers nominated as supportive,
empathic, and well-connected. This activity was robust enough
that, based on individuals’ brain activity alone, we could accu-
rately predict whether or not dormmates they encountered were
viewed as hubs by the broader community.
Several features of these findings stand out. First, brain activity

tracked hubs even though perceivers were not directed to evaluate
dorm members’ role in the community when viewing their faces.
This suggests that people identify hub individuals spontaneously
(cf. ref. 20) and might thus efficiently use this information to
identify socially valuable targets. Second, individuals’ brain activity
tracked hubs even when removing and controlling for perceivers’
relationship with these individuals. In other words, dorm members
track individuals who are viewed throughout their community as
helpful and positive social forces, irrespective of how perceivers
personally related to that person (21, 33).
There are numerous ways in which the ability to detect socially

valuable peers could serve perceivers. Empathic individuals
provide high-quality social support that can buffer their friends
during times of heightened stress and vulnerability. And these
individuals also tend to be connected to numerous other com-
munity members, meaning that forming relationships with them
is likely to provide access to other social resources. Several
motivational factors, including targets’ status or the likelihood of
forming close connections, drive perceivers’ tendency to men-
talize with them (34). Here, we do not examine the motives that
drive perceivers to detect high-value community members, nor
do we examine the consequences of such detection for per-
ceivers’ later well-being or social connectedness. It would be
useful, however, to leverage social network and neuroimaging
approaches to explore whether some perceivers are better than
others at detecting hub individuals, what drives accurate de-
tection of hubs, and whether savvy detectors benefit as a result.
Lastly, by comparing univariate and multivariate analyses, we

gained insight into how social value hubs are represented in the
brain. In general, average activation and multivariate patterns in
mentalizing and reward-related regions proved to be equally
predictive of when individuals were viewing hubs (or not). The
only exceptions were in the MPFC and striatum, where multi-
variate patterns outperformed average activity. Thus, these re-
gions may contain more fine-grained patterns that encode
additional information about community standing whereas other
regions may have a more uniform, graded response to hubs. It will
be worthwhile to attempt to replicate these findings, verifying that
multivariate patterns in these regions more accurately predict
social value hubs.
Our predictive analyses also shed light on an intriguing pattern

in the perception of social value. Both univariate activity and
multivariate patterns in perceivers’ brains linearly predicted the
social value of targets they encountered, but forced-choice
analysis revealed that this effect was driven by hub individuals
who received unusual numbers of nominations. This insight ex-
tends prior work combining social network science and neuro-
imaging. Two studies have demonstrated that brain activity in
perceivers tracks targets’ popularity and network centrality (19,

20). Here, we demonstrate that, in the domain of social value, this
relationship is nonlinear. Rather than monitoring social value as a
continuous variable, community members experience a “pop out”
effect, tracking only especially valuable peers. This could represent
an efficient metric for detecting trustworthy and supportive re-
lationship partners, rather than expending significant cognitive
resources to monitor all network members equally (35).
In sum, we identify a potential mechanism for detecting high-

quality social connections and provide insight into what neural
systems track individuals who build numerous strong ties in their
community. These findings can, in the future, inform how indi-
viduals accrue mental and physical health benefits from their
broader community.

Materials and Methods
Participants.As part of a larger study on social networks (12), newlymatriculated
college students were recruited from two freshman-only dormitories at Stanford
University. Ninety-seven freshmen for the larger study and 52 students who
were eligible and willing to participate in the fMRI scanning session provided
informed consent. Eligibility for scanning required that participants be right-
handed, free of ferrous metal, not actively taking psychoactive medications,
and have no history of neurological problems. Two participants were excluded
due to excessive signal dropout in their functional and anatomical scans.

The final sample consisted of 50 participants (25 males): 26 participants in
dorm A and 24 participants in dorm B with a mean age of 18.08 y (SD = 0.27)
and 18% East Asian, 10% Black or African American, 32% White or Caucasian,
12% Hispanic or Latino/a, 6% South Asian, and 22%Mixed Race or Other. Our
final sample was representative of the larger sample of 97 participants (52
males): 46 participants in dorm A and 51 participants in dorm B with a mean
age of 18.11 y (SD = 0.32) and 19% East Asian, 6% Black or African American,
34% White or Caucasian, 11% Hispanic or Latino/a, 6% South Asian, and 24%
Mixed Race or Other.

Procedure. During the second week of the academic quarter, 97 participants
completed social network nominations in an online survey. During the third
week of the quarter, an experimenter photographed each participant.
Participants were asked to pose with a neutral expression and forward eye
gaze. Over the next 6 wk, a subset of 50 students participated in fMRI
scanning sessions. Approximately 5 d before their scan, participants com-
pleted prescan ratings that assessed their perceptions of other individuals in
their dorm. During the scanning session, participants started with the face-
viewing task (described below) followed by a functional localizer task for
reward. They then completed four additional tasks related to social network
perceptions, prosociality, and empathy (not analyzed here). As part of the
larger study, participants also completed trait and daily surveys, as well as
providing saliva samples. All experiments involving human subjects were
approved by the Stanford University Institutional Review Board.

Social Network Nominations. To assess social value to the broader dorm
community, we asked participants to nominate up to eight people in their
dormitory in response to each of eight prompts (in the listed order): (i) “Who
are your closest friends?”, (ii) “Whom do you spend the most time with?”,
(iii) “Whom have you asked for advice about your social life?”, (iv) “Who do
you turn to when something bad happens?”, (v) “Whom do you share good
news with?”, (vi) “Who makes you feel supported and cared for?”, (vii)
“Who is the most empathetic?”, and (viii) “Who usually makes you feel
positive (e.g., happy, enthusiastic)?”.

Face-Viewing Task. The face-viewing task was modified from a study by
Zerubavel et al. (19). Participants were scanned as they viewed 30 photo-
graphs of dorm members. For each participant, we applied a face selection
algorithm to pick a unique set of 30 faces that maximized how much targets
varied in closeness to the participant. Photos were cropped to only include
targets’ faces and necks, converted to grayscale, and adjusted to have equal
luminance. Participants were not instructed to do anything while viewing
the faces, except press a button when they saw an occasional red dot (i.e., an
attention check) instead of a face. In a rapid event-related design, these 30
photos were randomly presented two times for 1 s each (SI Appendix, Fig.
S3), for a total of 60 face presentations. Twelve red dots were randomly
intermixed with these faces and displayed for 1 s each. A fixation cross was
displayed during the interstimulus intervals (ISIs) for a jitter of 1 to 8 s (mean
duration = 3.5 s).
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Analyses for Face-Viewing Task. For the face-viewing task, first-level effects were
estimated for two models using the general linear model. The first model was a
whole-brain parametric analysis aimed at identifying brain regions in which ac-
tivity increased as a function of targets’ hub index. The first regressor represented
the average hemodynamic response across all 60 presentations to dormmembers’
photos (i.e., all photos > baseline). To control for the perceivers’ personal rela-
tionship with the target, the second regressor was a parametric modulator mod-
eling the hemodynamic response that linearly varied with perceiver’s self-reported
ratings of closeness to the target collected before the scan. The third regressor
modeled the hemodynamic response that varied parametrically with targets’ hub
index (i.e., excluding the perceiver’s own ties to targets). Due to serial orthogo-
nalization of parametric modulators, variance associated with the third regressor
would reflect blood oxygen level-dependent activity correlated with network-
level perceptions of each target, after removing and controlling for perceivers’
personal relationship with these individuals. Therefore, first-level contrasts
were only computed for the parametric effect of targets’ hub index in model 1.

Model 2 was a whole-brain analysis conducted to produce statistical t maps
for leave-one-out cross-validation models. In model 2, the first three regressors
modeled the average hemodynamic response for targets in the following
three categories: (i) low hub index, (ii) middle hub index, and (iii) high hub
index. For the 30 targets selected specifically for each perceiver, the high hub
category included targets in the 67th percentile or higher on hub index. The
middle hub category included targets in the 33rd percentile or higher and
lower than the 67th percentile on hub index. The low hub category included
all targets below the 33rd percentile on hub index. To control for the per-
ceivers’ personal relationship with the target, we included a fourth regressor
that modeled the hemodynamic response that varied parametrically with
prescan ratings of closeness. Then, we computed three first-level contrasts
comparing each hub category to baseline (i.e., low hub category > baseline,
middle hub category > baseline, high hub category > baseline).

Both models included additional nuisance covariates: attention check trials,
six motion parameters from image realignment, and regressors modeling time
pointswhere in-brain global signal change exceeded2.5 SDs of themeanglobal
signal change or where estimated motion exceeded 0.5-mm translation or 0.5°
rotation. All events were modeled as a boxcar spanning their duration and
convolved with a canonical (double-gamma) hemodynamic response function.
The time series was high pass-filtered using a cutoff period of 128 s. Serial
autocorrelations were modeled as an AR(1) process.

For the parametric analysis, random effects analyses of the group were
computed using the contrast images generated for each participant. For whole-
brain group-level analyses, all imageswere thresholded using the cluster_correct
function in bspmview (https://doi.org/10.5281/zenodo.595175) with a cluster-

defining threshold of P < 0.001, followed by a cluster-level correction at a
family-wise error of 0.05. For leave-one-out cross-validation analyses, we used
multivoxel pattern analysis at the whole-brain level, as well as constraining the
search space to specific regions of interest related to mentalizing and reward
processing. For visualization of results, thresholded results were surface ren-
dered using bspmview (www.bobspunt.com/bspmview/).

Univariate Prediction. For each of the three tmaps associated with low, middle,
and high hub categories (see model 2 above), we averaged the t values in each
ROI for each participant. A linear model was then trained to predict the hub
category of a particular set of faces given the average t statistic of a given ROI.
A separate model was run for each ROI. (The t statistic maps are affected by the
amount of data collected. We could have trained the models on beta estimates,
which are less affected by the amount of data. Training the models on t statistic
maps, however, penalizes voxels with high variability, which would improve the
model’s ability to pick up meaningful signal in the maps.) To avoid overfitting
the data, we followed a leave-one-participant-out cross-validation procedure.
That is, we trained the models on the average t values of all but one participant
and assessed prediction accuracy in the held-out participant.

Multivariate Prediction. For each participant, we extracted and vectorized the t
values associated with each hub category in a given ROI. We then applied a
LASSO-PCR algorithm to predict hub category from the vectors of t values
(implemented with CANlab Core Tools package: canlab.github.io/CanlabCore/).
As a dimensionality reduction step, we first applied a principle components
analysis (PCA) on the vectors of t values. We retained the top number of com-
ponents that explained 35% of the variance in the data. As the PCA was done
separately for each ROI, this procedure allowed us to take a data-driven ap-
proach to determine the number of components to retain for each ROI. The
retained components were then used to predict the hub category using least
squares regression with L-1 regularization (LASSO), which encourages sparse
regression coefficients by shrinking them toward zero. For visualization pur-
poses, the regression coefficients were then back-projected into voxels in 3D
Montreal Neurological Institute space. As was the case with ROI prediction, we
followed a leave-one-participant-out cross-validation procedure to evaluate the
algorithm’s prediction accuracy.
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